

Optimization of bioethanol production from a sugarrich liquor and a functional animal feed ingredient obtained in the biorefinery scheme of grape stem

NEWFEED: Turn food industry by-products into secondary feedstuffs via circulareconomy schemes

的复数形式 网络大学教育学校 医外外的 医白色的 网络马克尔 医白色的 化合分子 化分子 医白垩 医白垩 医白色的 化分子子 化分子子 化分子子

Jone Ibarruri – AZTI - jibarruri@azti.es -

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

Grape stem from wineries as a second-generation feedstuff to produce a new feed ingredient for ruminants (dairy sheep and cattle). AZTI / Spain.

1 st

CASE STUDY 1 Grape stem-based ingredients for dairy sheep and cattle

Current situation

- EU is the world-leading producer of wine (75 % in Italy, Spain and France)
- Annual production: 167 million hectoliters (1,5 kg of grape -1 L wine) > 750.000 Tn

1 st

Grape stems are the only by-product of winemaking that is managed as a waste

- Fibres

- Sugars

Objective

1. Development of a stem washing process to reduce sugars to improve drying efficiency

2. Asses the use of the **sugar rich liquor** to produce **ethanol**

BASQUE RESEARCH

& TECHNOLOGY ALLIANCE

Parameter	Grape stem ingredient
Sugars (mg/g)	12.36
Polyphenols (mg/g)	30.55
Antioxidant activity (mg/g)	35.34
Protein (%)	5.66
Ash (%)	7.42
Acid detergent fibre (%)	50.95
Lignin (%)	22.36
Neutral detergent fibre (%)	53.18

Initial tests

	Fructose (g/L)	Glucose (g/L)	Total sugars (g/L)	рН	Nitrogen (mg/L)
Sugar rich liquor	10.2	13.2	23.5	4.4	108

- Fermentation tests were performed (96 h, 28 °C, Saccharomyces cerevisiae BO213, Laffort)

Initial sugars: 20 g/L (56 % glucosa - 44 % fructose). Extra nitrogen addition

- Starting samples have between 5 and 10 g/L ethanol
- Yield close to 100 %
- No difference with or without nitrogen addition
- Sugar consumption >90 %

2. Asses the use of the sugar rich liquor to produce ethanol Degradation test

- Objective: Assess the degradation of compounds present in grape stems (10 days)
- A total of 150 kg of fresh stems were collected from 2 wineries
- They were stored in open bags (8 kg/per bag) in temperature-controlled chambers to simulate cellar conditions

Degradation test

- Grape stems were grinded and washed with water (1:1) to extract sugars with biotechnological potential
- This process was repeated every day (for 10 days)

Degradation test

Degradation test

Pec

Ethanol production potential in 3 possible stem collection scenarios

Ethanol production potential in 3 possible stem collection scenarios

	 Same day of generation 		Reducing sugars (g/L)	Ethanol (g/L)	
		Day 0	60.40	0.31	
•	- 48 hours	48 h	38.93	3.52	Shafe:
	 72 hours 	72 h	20.57	7.16	
40				, ,	
35	● 60-without N				•
30	● 60-with N		I		Ĭ
25 (T)	40-without N40-without N20-without N		T T		
Ethanol (Ĭ		Ţ
15 10			-		
5					
0					
(5 10 20	30 Time	40 50 (h)	60	70

Ethanol production scale-up in 5L reactor

2. Asses the use of the sugar rich liquor to produce ethanol Legislative analysis

" Regulation (UE) 2019/787"

The ethyl alcohol and distillates used in the production of spirits shall be exclusively of agricultural origin

(a) has been obtained by **alcoholic fermentation**, followed by **distillation** exclusively of agricultural products

(b) it has **no perceptible flavour** other than that of the raw materials used in its production

(c) it has a minimum alcoholic strength by volume of 96.0 %

(d) its maximum residue levels do not exceed those defined by law:

(i) ethyl acetate (ii) acetaldehyde (iii) higher alcohols (iv) methanol (v) Furfural

Technical sizing

Scenario: 10,000 tons of grape stems/year in the Basque Country region for 3 or 4 months.

1st Option: 4 days of Storage in the cellar			
	Units	Value	
Ethanol	g ethanol / L	20.0	
Liquor	Tn/year	7,000	
Prize	€/tn	20	

2nd Option: 7 days of Storage in the cellar

	Units	Value
Ethanol	g ethanol / L	17.0
Liquor	Tn /year	7,000
Prize	€/tn	17

Ethanol prize: 1000-2000 €/Tn

- Life Cycle Costing
- Life Cycle Assesment

Middle East Technical University

ONGOING

- Legal issues
- Analysis of the posible scenarios
- Market analysis
- Dissemination and Explotation plan

CONCLUSIONS

- Grape stems are an available and cheap raw material with high potential to obtain a sugar rich liquor and an ingredient for animal feeding.
- The washing process educes the sugar content in order to improve drying efficiency.
- During the storage sugars were rapidly consumed (les tan 10 g/L after 48h) and up to 17 g of ethanol per litre were spontaneously produced, with lower yield than in controlled conditions.
- The optimization led to a final production of 25-30 g ethanol/L.
- Depending on the starting sugars, the final ethanol production will be higher or lower and this can

help to better define the collection periodicity and the associated business model.

Thank you for your attention!

jibarruri@azti.es

Demonstration under grant agreement n°2013

info@newfeed-prima.eu

https://newfeed-prima.eu/

David San Martin / AZTI: dsanmartin@azti.es

faac

FEED FROM FOOD INDUSTRY

BY-PRODUCTS